MC74LCX14 Low Voltage CMOS Hex Schmitt Inverter With 5 V-Tolerant Inputs The MC74LCX14 is a high performance hex inverter with Schmitt-Trigger inputs operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers, while TTL compatible outputs offer improved switching noise performance. A VI specification of 5.5 V allows MC74LCX14 inputs to be safely driven from 5.0 V devices. Pin configuration and function are the same as the MC74LCX04, but the inputs have hysteresis and, with its Schmitt trigger function, the LCX14 can be used as a line receiver which will receive slow input signals. http://onsemi.com MARKING DIAGRAMS 14 SOIC-14 D SUFFIX CASE 751A 14 1 1 Features Designed for 2.3 V to 3.6 V VCC Operation 5.0 V Tolerant Inputs - Interface Capability with 5.0 V TTL Logic LVTTL Compatible LCX14G AWLYWW 14 14 1 TSSOP-14 DT SUFFIX CASE 948G 1 LVCMOS Compatible 24 mA Balanced Output Sink and Source Capability Near Zero Static Supply Current (10 mA) Substantially Reduces System Power Requirements Latchup Performance Exceeds 500 mA Current Drive Capability is 24 mA at Source/Sink Pin and Function Compatible with Other Standard Logic Families ESD Performance: Human Body Model >2000 V Machine Model >100 V A L, WL Y, YY W, WW G or G LCX 14 ALYWG G = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. Chip Complexity: 41 Equivalent Gates These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant Semiconductor Components Industries, LLC, 2012 October, 2012 - Rev. 8 1 Publication Order Number: MC74LCX14/D MC74LCX14 A1 A2 VCC A6 Y6 A5 Y5 A4 Y4 14 13 12 11 10 9 8 A3 A4 A5 1 2 3 4 5 6 7 A1 Y1 A2 Y2 A3 Y3 GND A6 Figure 1. Pinout: 14-Lead (Top View) 1 2 3 4 5 6 9 8 11 10 13 12 Y1 Y2 Y3 Y=A Y4 Y5 Y6 Figure 2. Logic Diagram PIN NAMES TRUTH TABLE Pins Function Inputs Outputs An Data Inputs A Y Yn Outputs L H H L MAXIMUM RATINGS Symbol VCC Parameter DC Supply Voltage VI DC Input Voltage VO DC Output Voltage IIK DC Input Diode Current IOK DC Output Diode Current Value Condition Units -0.5 to +7.0 V -0.5 VI +7.0 V -0.5 VO VCC + 0.5 Output in HIGH or LOW State. (Note 1) V -50 VI < GND mA -50 VO < GND mA +50 VO > VCC mA IO DC Output Source/Sink Current 50 mA ICC DC Supply Current Per Supply Pin 100 mA IGND DC Ground Current Per Ground Pin 100 mA TSTG Storage Temperature Range MSL Moisture Sensitivity -65 to +150 C Level 1 Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. IO absolute maximum rating must be observed. http://onsemi.com 2 MC74LCX14 RECOMMENDED OPERATING CONDITIONS Symbol VCC Parameter Supply Voltage Operating Data Retention Only Min Typ Max 2.0 1.5 2.5 to 3.3 3.6 3.6 Units V VI Input Voltage 0 5.5 V VO Output Voltage (HIGH or LOW State) 0 VCC V IOH HIGH Level Output Current VCC = 3.0 V-3.6 V VCC = 2.7 V-3.0 V VCC = 2.3 V-2.7 V -24 -12 -8 IOL LOW Level Output Current VCC = 3.0 V-3.6 V VCC = 2.7 V-3.0 V VCC = 2.3 V-2.7 V +24 +12 +8 TA Operating Free-Air Temperature mA mA -40 +85 C IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIII IIIIIIIIIIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIII III IIIIIIIIIIII IIII IIII IIII IIIIIIIIIII III IIIIIIIIIIII IIII IIII IIII IIIIIIIIIII III IIIIIIIIIIII IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIII III IIIIIIIIIIII IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII DC ELECTRICAL CHARACTERISTICS TA = -40 to 85C Symbol Characteristic Condition Min Max Units VT+ Positive Input Threshold Voltage (Figure 3) VCC = 2.5 V VCC = 3.0 V 0.9 1.2 1.7 2.2 V VT- Negative Input Threshold Voltage (Figure 3) VCC = 2.5 V VCC = 3.0 V 0.4 0.6 1.1 1.5 V VH Input Hysteresis Voltage (Figure 3) VCC = 2.5 V VCC = 3.0 V 0.3 0.4 1.0 1.2 V 2.3 V VCC 3.6 V; IOL = 100 mA VCC - 0.2 VCC = 2.3 V; IOH = -8 mA 1.8 VCC = 2.7 V; IOH = -12 mA 2.2 VCC = 3.0 V; IOH = -18 mA 2.4 VCC = 3.0 V; IOH = -24 mA 2.2 VOH VOL IOFF HIGH Level Output Voltage LOW Level Output Voltage 2.3 V VCC 3.6 V; IOL = 100 mA 0.2 VCC = 2.3 V; IOL = 8 mA 0.3 VCC = 2.7 V; IOL = 12 mA 0.4 VCC = 3.0 V; IOL = 16 mA 0.4 VCC = 3.0 V; IOL = 24 mA 0.55 V VCC = 0, VIN = 5.5 V or VOUT = 5.5 V 10 mA IIN Input Leakage Current VCC = 3.6 V, VIN = 5.5 V or GND 5.0 mA ICC Quiescent Supply Current VCC = 3.6 V, VIN = 5.5 V or GND 10 mA 2.3 VCC 3.6 V; VIH = VCC - 0.6 V 500 mA DICC Power Off Leakage Current V Increase in ICC per Input http://onsemi.com 3 MC74LCX14 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 2.5 ns) Limits TA = -40C to +85C VCC = 3.3 V 0.3 V VCC = 2.7 V VCC = 2.5 V 0.2 V CL = 50 pF CL = 50 pF CL = 30 pF Symbol Parameter Waveform Min Max Min Max Min Max Units tPLH tPHL Propagation Delay Input to Output 1 1.5 1.5 6.5 6.5 1.5 1.5 7.5 7.5 1.5 1.5 7.8 7.8 ns tOSHL tOSLH Output-to-Output Skew (Note 2) 1.0 1.0 ns 2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design. DYNAMIC SWITCHING CHARACTERISTICS TA = +25C Symbol Characteristic Condition Min Typ Max Units VOLP Dynamic LOW Peak Voltage (Note 3) VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V 0.8 0.6 V VOLV Dynamic LOW Valley Voltage (Note 3) VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V -0.8 -0.6 V 3. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. CAPACITIVE CHARACTERISTICS Symbol Condition Typical Units Input Capacitance VCC = 3.3 V, VI = 0 V or VCC 7 pF COUT Output Capacitance VCC = 3.3 V, VI = 0 V or VCC 8 pF CPD Power Dissipation Capacitance 10 MHz, VCC = 3.3 V, VI = 0 V or VCC 25 pF CIN Parameter ORDERING INFORMATION Package Shipping MC74LCX14DG SOIC-14 (Pb-Free) 55 Units / Rail MC74LCX14DR2G SOIC-14 (Pb-Free) 2500 Tape & Reel MC74LCX14DTG TSSOP-14 (Pb-Free) 96 Units / Rail MC74LCX14DTR2G TSSOP-14 (Pb-Free) 2500 Tape & Reel Device For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 4 MC74LCX14 VCC PULSE GENERATOR DUT RT VCC A 50% RL GND tPLH Y CL tPHL CL =50 pF at VCC = 3.3 0.3 V or equivalent (includes jig and probe capacitance) RL = R1 = 500 W or equivalent RT = ZOUT of pulse generator (typically 50 W) VOH 50% VCC VOL VT , TYPICAL INPUT THRESHOLD VOLTAGE (VOLTS Figure 3. Switching Waveforms Figure 4. Test Circuit 4 3 (VT+) 2 VHtyp (VT-) 1 2 2.5 3.5 3 VCC, POWER SUPPLY VOLTAGE (VOLTS) VHtyp = (VT+ typ) - (VT- typ) 3.6 Figure 5. Typical Input Threshold, VT+, VT- versus Power Supply Voltage (a) A Schmitt-Trigger Squares Up Inputs With Slow Rise and Fall Times VH Vin (b) A Schmitt-Trigger Offers Maximum Noise Immunity VCC VH VT+ VT- Vin VCC VT+ VT- GND GND VOH VOH Vout Vout VOL VOL Figure 6. Typical Schmitt-Trigger Applications http://onsemi.com 5 MC74LCX14 INPUT Figure 7. Input Equivalent Circuit http://onsemi.com 6 MC74LCX14 PACKAGE DIMENSIONS TSSOP-14 CASE 948G ISSUE B 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S N 2X 14 L/2 0.25 (0.010) 8 M B -U- L PIN 1 IDENT. N F 7 1 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. S S DETAIL E K A -V- EEE CCC CCC EEE K1 J J1 DIM A B C D F G H J J1 K K1 L M SECTION N-N -W- C 0.10 (0.004) -T- SEATING PLANE D H G DETAIL E SOLDERING FOOTPRINT* 7.06 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 7 MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 --- 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 --- 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ MC74LCX14 PACKAGE DIMENSIONS SOIC-14 NB CASE 751A-03 ISSUE K D A B 14 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. A3 E H L 1 0.25 M DETAIL A 7 B 13X M b 0.25 M C A S B S e DETAIL A h A X 45 _ M A1 C SEATING PLANE DIM A A1 A3 b D E e H h L M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ SOLDERING FOOTPRINT* 6.50 14X 1.18 1 1.27 PITCH 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 http://onsemi.com 8 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC74LCX14/D